Automatic Clustering Using Multi-objective Particle Swarm and Simulated Annealing
نویسندگان
چکیده
This paper puts forward a new automatic clustering algorithm based on Multi-Objective Particle Swarm Optimization and Simulated Annealing, "MOPSOSA". The proposed algorithm is capable of automatic clustering which is appropriate for partitioning datasets to a suitable number of clusters. MOPSOSA combines the features of the multi-objective based particle swarm optimization (PSO) and the Multi-Objective Simulated Annealing (MOSA). Three cluster validity indices were optimized simultaneously to establish the suitable number of clusters and the appropriate clustering for a dataset. The first cluster validity index is centred on Euclidean distance, the second on the point symmetry distance, and the last cluster validity index is based on short distance. A number of algorithms have been compared with the MOPSOSA algorithm in resolving clustering problems by determining the actual number of clusters and optimal clustering. Computational experiments were carried out to study fourteen artificial and five real life datasets.
منابع مشابه
Automatic clustering algorithm based on multi-objective Immunized PSO to classify actions of 3D human models
Multi-objective clustering algorithms are preferred over its conventional single objective counterparts as they incorporate additional knowledge on properties of data in the from of objectives to extract the underlying clusters present in many datasets. Researchers have recently proposed some standardized multi-objective evolutionary clustering algorithms based on genetic operations, particle s...
متن کاملA Multi-Objective Particle Swarm Optimization for Mixed-Model Assembly Line Balancing with Different Skilled Workers
This paper presents a multi-objective Particle Swarm Optimization (PSO) algorithm for worker assignment and mixed-model assembly line balancing problem when task times depend on the worker’s skill level. The objectives of this model are minimization of the number of stations (equivalent to the maximization of the weighted line efficiency), minimization of the weighted smoothness index and minim...
متن کاملSolution of Multi-Objective optimal reactive power dispatch using pareto optimality particle swarm optimization method
For multi-objective optimal reactive power dispatch (MORPD), a new approach is proposed where simultaneous minimization of the active power transmission loss, the bus voltage deviation and the voltage stability index of a power system are achieved. Optimal settings of continuous and discrete control variables (e.g. generator voltages, tap positions of tap changing transformers and the number of...
متن کاملSimultaneous Multi-Skilled Worker Assignment and Mixed-Model Two-Sided Assembly Line Balancing
This paper addresses a multi-objective mathematical model for the mixed-model two-sided assembly line balancing and worker assignment with different skills. In this problem, the operation time of each task is dependent on the skill of the worker. The following objective functions are considered in the mathematical model: (1) minimizing the number of mated-stations (2), minimizing the number of ...
متن کاملMultiobjective Evolutionary Algorithms for Scheduling Jobs on Computational Grids
In a computational grid, at time t, the task is to allocate the user defined jobs efficiently by meeting the deadlines and making use of all the available resources. In the past, objectives were combined and the problem is very often simplified to a single objective problem. In this paper, we formulate a novel Evolutionary Multi-Objective (EMO) approach by using the Pareto dominance and the obj...
متن کامل